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This paper presents a modified Variable Neighborhood Search (VNS) heuristic algorithm for solving the
Discrete Ordered Median Problem (DOMP). This heuristic is based on new neighborhoods’ structures that
allow an efficient encoding of the solutions of the DOMP avoiding sorting in the evaluation of the objec-
tive function at each considered solution. The algorithm is based on a data structure, computed in pre-
processing, that organizes the minimal necessary information to update and evaluate solutions in
linear time without sorting. In order to investigate the performance, the new algorithm is compared with
other heuristic algorithms previously available in the literature for solving DOMP. We report on some
computational experiments based on the well-known N-median instances of the ORLIB with up to 900
nodes. The obtained results are comparable or superior to existing algorithms in the literature, both in
running times and number of best solutions found.

� 2013 Elsevier B.V. All rights reserved.
1. Introduction

Location analysis is a very active topic within the Operations
Research community. It has given rise to a number of nowadays
standard optimization problems some of which are in the core of
modern mathematical programming. One of its more important
branches is Discrete Location. Witnesses of its importance are a
number of survey articles and textbooks that collect a large num-
ber of references on methodological results and applications, see
e.g. Daskin (1995), Drezner and Hamacher (2002), Mirchandani
and Francis (1990), Nickel and Puerto (2005) and references there-
in. Roughly speaking, Discrete Location problems typically involve
a finite set of sites at which facilities can be located, and a finite set
of clients, whose demands have to be satisfied from the facilities.

An important aspect of a location model is the right choice of
the objective function and in most classical location models the
objective function is the main differentiator. Therefore, a great
variety of objective functions has been considered.

Discrete Ordered Median Problem was introduced to provide a
unifying way to model many location models see e.g. Nickel
(2001), Boland, Domínguez-Marín, Nickel, and Puerto (2006) and
Nickel and Puerto (2005). It has been recognized as a powerful tool
from a modeling point of view because it generalizes the most
popular objective functions in the literature of location analysis
and it also allows to distinguish the different roles played by the
different parties in a supply chain network. The correct identifica-
tion of the different roles played by the agents participating in
logistics models has led to describe and analyze new types of dis-
tribution patterns, namely customer-oriented, supplier-oriented or
third party logistics provider-oriented, see (Kalcsics, Nickel, Puerto,
& Rodríguez-Chía, 2010a, 2010b; Puerto, Ramos, & Rodríguez-Chía,
2011). The objective function of DOMP applies a penalty to the cost
of supplying a client which is dependent on the position of that cost
relative to the costs of supplying the remaining clients. Therefore,
it increases the flexibility in the modeling phase through rank
dependent compensation factors which allow to model which
party is the driving force in a supply chain.

In the last years, a number of algorithms have been developed
to attack the resolution of DOMP (see Boland et al., 2006; Kalcsics
et al., 2010a, 2010b; Marín, Nickel, Puerto, & Velten, 2009; Nickel,
2001; Nickel & Puerto, 1999 & Rodríguez-Chía et al., Rodríguez-
Chía, Nickel, Puerto, & Fernández, 2000). The first exact method
was a branch and bound (B& B) algorithm presented in Boland
et al. (2006). Later, a more specialized formulation was introduced
in Marín et al. (2009) giving rise to a more efficient branch and cut
(B&Cut) algorithm. Finally, in Marín, Nickel, and Velten (2010) the
authors develop a new formulation that has allowed to solve larger
size instances to optimality. The reader is referred to Marín et al.
(2010) for a comprehensive literature review on exact methods
for DOMP. More recently, the capacitated version of these
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Table 1
Modeling possibilities.

k fk(X) Meaning

(1, . . . , 1) PM
i¼1ciðXÞ N-Median

(0, . . . , 0, 1) max16i6Mci(X) N-Center
(a, . . . , a, 1) a 2 [0, 1] a �

PM
i¼1ciðXÞ þ ð1� aÞ �max16i6MciðXÞ a-Centdian

ð0; . . . ;0;1; . . . ;1|fflfflfflffl{zfflfflfflffl}
k

Þ PM
i¼M�kþ1cðiÞðXÞ k–Centrum
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problems has been also considered in Kalcsics et al., 2010a, 2010b
where first attempts to solve capacitated versions of DOMP have
been developed. However, none of these approaches leads to satis-
factory results concerning the solution times of even medium size
instances. In spite of that, the literature on heuristic algorithms for
this family of problems is rather reduced. Domínguez-Marín, Nick-
el, Hansen, and Mladenović (2005) present two heuristic ap-
proaches, a Variable Neighborhood Search (VNS) and a genetic
algorithm, for solving DOMP, whereas Stanimirovic, Kratica, and
Dugosija (2007) proposes two Evolutionary Programs (with two
different encodings: binary in HGA1 and integer in HGA2) based
on new encodings of the solution for better evaluation of the objec-
tive function that improve the heuristic algorithms in Domínguez-
Marín et al. (2005). In both papers, the authors use ORLIB N-med-
ian instances with up to 900 nodes for testing their results.

The goal of this paper is to develop a modified VNS heuristic for
DOMP which takes some advantage of the new available knowl-
edge on the structure of this problem. Specifically, we use refined
neighborhoods’ structures that favor faster improvement of the
objective function in the local search phase. Moreover, we apply
an efficient encoding of solutions avoiding sorting in each objective
function evaluation. This specific encoding allows to obtain a faster
implementation than the one in Domínguez-Marín et al. (2005) for
the VNS paradigm to this family of problems. In addition, it pro-
vides results that compare with the best heuristic algorithms
known so far for the DOMP (Stanimirovic et al., 2007). To this
end, the paper is organized as follows. Section 2 is devoted to recall
the DOMP. Section 3 describes our modified VNS algorithm for the
DOMP. There, we describe our neighborhoods’ structures and the
different elements that allow a better encoding of solutions avoid-
ing sorting in each evaluation of the objective function. The presen-
tation of the algorithm is modular. Thus, we present the different
functions that are used in the algorithm, namely, Initial Solution,
Variable Neighborhood Descent, Shaking and finally the actual algo-
rithm Modified Variable Neighborhood Search. In Section 4, we re-
port our computational results based on 8 problem types,
previously considered in the literature, and on data taken from
the benchmark instances of the ORLIB N-median library by Beasley
(1990). The paper ends with some conclusions on the proposed
algorithm and on the comparisons with previously available heu-
ristics for the considered problem.

2. The discrete ordered median problem

In order to introduce the Discrete Ordered Median Problem
(DOMP) formally, we define a set V of M discrete locations. These
locations represent clients as well as potential plant locations.

Moreover, let C = [cij] (i, j = 1, . . . , M) be a non–negative M �M
cost matrix, whereas cij denotes the cost of satisfying the total de-
mand of client i from a plant at location j. Thereby, we assume that
cii = 0 (" i = 1, . . . , M). This property of C is called free self–service
(FSS). For the sake of readability, we denote by G the number of dif-
ferent values assumed by the elements of matrix C. Moreover, we
shall refer to the sorted values of C by c(j), j = 1, . . . , G.

Let N with 1 6 N 6M � 1 be the number of new plants which
have to be located at the candidate sites. Then, the costs for satis-
fying the demand of the respective clients, given a feasible solution
X � V with jXj = N, can be represented by the following vector

cðXÞ :¼ ðc1ðXÞ; . . . ; cMðXÞÞ with ciðXÞ ¼min
j2X
fcijg 8 i 2 V :

However, due to the desired flexibility, c(X) cannot directly be
used to define the objective function of the DOMP. Instead, con-
sider a permutation rX on {1, . . . ,M} for which the inequalities

crX ð1ÞðXÞ 6 crX ð2ÞðXÞ 6 � � � 6 crX ðMÞðXÞ
hold. Using this permutation we define the sorted cost vector c6(X)
corresponding to a feasible solution X as follows:

c6ðXÞ :¼ ðcrX ð1ÞðXÞ; . . . ; crX ðMÞðXÞÞ

or for short

c6ðXÞ :¼ ðcð1ÞðXÞ; . . . ; cðMÞðXÞÞ:

Furthermore, let k = (k1, . . . ,kM) be an M-dimensional vector, with
ki P 0 (" i = 1, . . . ,M) representing a weight on the ith lowest com-
ponent of the cost vector c(X). Using the notation explained above
the DOMP is defined as:

min
X�V
jXj¼N

fkðXÞ ¼
XM

i¼1

cðiÞðXÞ � ki: ð1Þ

The function fk(X) is called ordered median function. An example
illustrating the structure of the DOMP and the calculation of the or-
dered median function is given below.

Example 2.1. Let V = {1, . . . ,5} and assume that N = 2 plants have to
be located. Moreover, let the cost matrix C be as follows:

C ¼

0 4 5 3 3
1 0 6 2 2
7 3 0 3 1
7 3 5 0 5
1 3 2 3 0

0
BBBBBB@

1
CCCCCCA
:

Clearly G = 8 and c(1) = 0, c(2) = 1, c(3) = 2, c(4) = 3, c(5) = 4, c(6) = 5,
c(7) = 6, c(8) = 7.

With k = (0,0,1,1,0), an optimal solution of this problem
instance is X = {1,4}. Therefore, the demand of locations 1, 2 and
5 are satisfied by plant 1 whereas the demand of the remaining
locations are satisfied by plant 4. Hence, c(X) = (0,1,3,0,1),
c6(X) = (0,0,1,1,3) and

fkðXÞ ¼ 0 � 0þ 0 � 0þ 1 � 1þ 1 � 1þ 0 � 3 ¼ 2:

Note that by using appropriate values for k, nearly all classical
discrete facility location problems can be modeled by the above
definition. In addition, a wide range of new and interesting
problems can be derived. Some of these modeling possibilities
are given in Table 1. For a more extensive list the interested reader
is referred to Domínguez-Marín (2003) and Nickel and Puerto
(2005).

Since the DOMP contains, as a special instance, the discrete N-
median problem which is NP-hard (see Kariv & Hakimi, 1979)
the DOMP is also NP-hard. In spite of that, as mentioned in the
Introduction, different integer linear programming formulations
have also been proposed for DOMP which can solve to optimality
medium size instances up to 100 nodes (Marín et al., 2009). Never-
theless, for larger sizes the exact approaches do not perform well.
In the following section we propose a modified VNS heuristic for
DOMP.



Table 2
The lists LðjÞ; j ¼ 1; . . . ;5.

Column j Lists LðjÞ, j = 1, . . . , 5

1 1
ð1Þ
0
�
�

2
66664

3
77775

1
ð2;5Þ

1
�
�

2
66664

3
77775

1
ð3;4Þ

7
�
�

2
66664

3
77775

2 2
ð2Þ
0
�
�

2
66664

3
77775

2
ð3;4;5Þ

3
�
�

2
66664

3
77775

2
ð1Þ
4
�
�

2
66664

3
77775

3 3
ð3Þ
0
�
�

2
66664

3
77775

3
ð5Þ
2
�
�

2
66664

3
77775

F !
R!
cð:Þ !
used!
fk !

3
ð1;4Þ

5
�
�

2
66664

3
77775

3
ð2Þ
6
�
�

2
66664

3
77775

4 4
ð4Þ
0
�
�

2
66664

3
77775

4
ð2Þ
2
�
�

2
66664

3
77775

4
ð1;3;5Þ

3
�
�

2
66664

3
77775

5 5
ð5Þ
0
�
�

2
66664

3
77775

5
ð3Þ
1
�
�

2
66664

3
77775

5
ð2Þ
2
�
�

2
66664

3
77775

5
ð1Þ
3
�
�

2
66664

3
77775

5
ð4Þ
5
�
�

2
66664

3
77775
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3. A modified variable neighborhood search for the DOMP

The basic idea of VNS is to implement a systematic change of
neighborhood within a local search algorithm (see Hansen &
Mladenović (1997, 2001, 2001, 2003), Hansen, Mladenović, &
Moreno-Pérez (2010) and Hansen, Mladenović, & Pérez-Brito
(2001)). Exploration of these neighborhoods can be done in two
ways. The first one consists of systematically exploring the small
neighborhoods, i.e. those closest to the current solution, until a
better solution is found. The second one consists of partially
exploring the large neighborhoods, i.e., those far from the current
solution, by drawing a solution at random from them and begin-
ning a (variable neighborhood) local search from there. The algo-
rithm remains in the same solution until a better solution is
found and then jumps there. These algorithms rank the neighbor-
hoods to be explored in such a way that they are increasingly far
from the current solution. We may view VNS as a way of escaping
local optima, i.e., a ‘‘shaking’’ process, where movement to a neigh-
borhood further from the current solution corresponds to a harder
shake. In contrast to random restart, VNS allows a controlled in-
crease in the level of the shake.

The standard application of VNS to the N-median problem pro-
posed by Hansen and Mladenović (1997) encodes a solution by the
indices of open facilities. Then, it needs to identify the allocation of
demand points to open facilities to get the vector of costs. For the
N-median problem updating the value of the objective function can
be done step by step. As mentioned above N-median is a particular
case of DOMP. For this reason Domínguez-Marín et al. (2005) ap-
plied the above structure to develop the first VNS algorithm for
the DOMP. However, computation of the objective function value
is much harder for DOMP than for N-median. Indeed, a major dif-
ficulty in the application of the above encoding to DOMP is to com-
pute the variation between the objective function values when an
interchange between two facilities is performed. This is so because
one is forced to update and sort the whole cost vector after this
interchange takes place. As a consequence, the complexity of this
procedure applied to DOMP is higher due to this extra sorting
which has to be done at each objective function calculation.

Our approach is different. First of all, we refine an already used
family of neighborhoods’ structures in a way that they favor faster
local improvements in the objective function. This is improvement
is attained because they bound, from above, the cost cij of alloca-
tions that are permitted in the considered neighborhood. This
helps to speed up the local search phase. Moreover, the encoding
is different.

Let us denote by S = {(X,a): X is a set of N potential locations of
the new facilities and a is an allocation function a(i) 2 X for all
i 2 {1, . . . ,M}} a solution space of the problem. The solutions in S
admit different neighborhoods’ structures depending on the num-
ber of new facilities k = 1, . . . , kmax, (kmax 6 N) from the current
solution that are replaced in the new solution; and on the proper-
ties of the allocation function a that is applied. We consider alloca-
tion functions ar, r 2 {c(1), . . . ,c(G)}, such that for any set X 0k of new
facilities to be included in the current solution X, satisfy ar(i) – j
for all j 2 X0k such that cij > r. (New allocations at a cost greater than
r are forbidden.)

We denote by N kr , k 2 {1, . . . ,kmax}, r = 0, . . . , rmax (kmax 6 N,
rmax 6 c(G)) the set of such neighborhoods’ structures and by
N krðXÞ the set of solutions defining the neighborhood N kr of a cur-
rent solution X. More formally

X1 2 N krðX2Þ () jX1 n X2j ¼ k and arðiÞ– j

8j 2 X1 n X2 such that cij > r: ð2Þ

Note that the cardinality of N krðXÞ is of the order of
O(Nk(M � N)kMN), since k out of N facilities are dropped, k out of
M � N added into the solution and different allocations can be done.
Finally, we observe that the union of the sets N krðXÞ together with
X, is S.

3.1. Encoding and Evaluating Solutions

We represent solutions by open facilities but instead of using
directly the vector of cost allocations, we maintain a list, L, with
minimal required information to evaluate the objective function
without sorting after each solution update. See (Mladenović, Labbé,
& Hansen, 2003 and Stanimirovic et al., 2007) for related encodings
valid for N-center and N-ordered median problems, respectively.

Associated with each column j of the cost matrix, we define a
list LðjÞ . This list contains as many entries as the number of differ-
ent values that appear in the column j of the cost matrix and it is
sorted in increasing order of these values. Each record in the list
LðjÞ keeps information on the facility, ‘F’, whose allocation costs
are given in column j, a realizable allocation cost, ‘c(.)’, of serving
from facility at F and the list of pointers ‘R’ to the rows where each
cost in the column j appear in the cost matrix. This information de-
scribes any instance of a DOMP. In addition, each record has two
more operational fields used for evaluation. The first one, called
used, will keep track of the number of times that a demand point
is served with the corresponding cost in the current solution
whereas the second one will maintain the partial evaluation of
the objective function (i.e., the cumulated cost) fk. (See Table 2
for an illustrative example of lists LðjÞ in Example 3.1.) Note that
we have M lists that correspond to the M columns of the matrix C.

The list L is computed once in the preprocessing phase and it is
the result of a merge-sort, by the field c(.), of the sorted lists LðjÞ,
j = 1, . . . , M. (Table 3 shows the list L in Example 3.1.)

From the list L we generate Table TðLÞ which has M rows.
(Table 4 shows the Table TðLÞ of Example 3.1.) Row j has as many
elements as jLðjÞj. The i � th entry of this row refers to LiðjÞ, the
i � th element of the list LðjÞ. It contains the pair (k,Ri) where k is
the position of LiðjÞ in L and Ri is the field R in LiðjÞ. (Recall that
Ri is the list of rows in the j � th column of C whose values, c�j,
are equal to the field c(.) of LiðjÞ).

Now, we can easily evaluate any solution of DOMP. Indeed,
consider the solution X = {Fi1, . . . ,FiN}. Let L(X) be the list that
results from the merge-sort of the rows i1, . . . , iN of Table TðLÞ



Table 3
The main list L.

List L

1 2 3 4 5 6 7 8 9
F
R

cð�Þ
used

fk

1
ð1Þ
0
�
�

2
66664

3
77775

2
ð2Þ
0
�
�

2
66664

3
77775

3
ð3Þ
0
�
�

2
66664

3
77775

4
ð4Þ
0
�
�

2
66664

3
77775

5
ð5Þ
0
�
�

2
66664

3
77775

1
ð2;5Þ

1
�
�

2
66664

3
77775

5
ð3Þ
1
�
�

2
66664

3
77775

3
ð5Þ
2
�
�

2
66664

3
77775

4
ð2Þ
2
�
�

2
66664

3
77775

10 11 12 13 14 15 16 17 18
F
R

cð�Þ
used

fk

5
ð2Þ
2
�
�

2
66664

3
77775

2
ð3;4;5Þ

3
�
�

2
66664

3
77775

4
ð1;3;5Þ

3
�
�

2
66664

3
77775

5
ð1Þ
3
�
�

2
66664

3
77775

2
ð1Þ
4
�
�

2
66664

3
77775

3
ð1;4Þ

5
�
�

2
66664

3
77775

5
ð4Þ
5
�
�

2
66664

3
77775

3
ð2Þ
6
�
�

2
66664

3
77775

1
ð3;4Þ

7
�
�

2
66664

3
77775

Table 4
The table TðLÞ.

1 (1, (1)) (6, (2, 5)) (18, (3, 4))
2 (2, (2)) (11, (3, 4, 5)) (14, (1))
3 (3, (3)) (8, (5)) (15, (1, 4)) (17, (2))
4 (4, (4)) (9, (2)) (12, (1, 3, 5))
5 (5, (5)) (7, (3)) (10, (2)) (13, (1)) (16, (4))
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in increasing order of k and without repetitions of any element in
the lists R of the previously chosen pairs (k,R). Thus, if the next
element to be merged in a partially built list L(X) is ð�k;RÞ with
R ¼ R1SR2 and the elements in R1 were already covered by
previous elements inserted in L(X), then we only add the pair
ðk;R2Þ. (Expression (5) shows L({2,4}) in Example 3.1.)

The next example illustrates the data structure used in our
algorithm.

Example 3.1. Consider the cost matrix introduced in Example 2.1.
First, we have computed the lists LðjÞ, j = 1, . . . , 5. (See Table 2.) For
instance, the third element in the third row, namely
[3, (1,4),5,�,�]t, comes from the third column of the cost matrix C
and is built in the following way:

� F = 3. It indicates that this record (vector) refers to the third col-
umn of the cost matrix C.
� R = (1,4). The allocation costs c13 = c43 assume the value c(.) = 5.

This field of R informs that the cost to which this element refers
to, namely 5 (the sixth component of the vector of sorted costs),
appears twice in column 3 of C, namely in rows 1 and 4.
� c(.) = 5. The cost matrix to which we refer to is 5.

From the lists LðjÞ, it is easy to obtain the main list L by simply
merging the lists LðjÞ in non-decreasing value of their fields c(.).
Applying this merging to the elements in Table 2 results in the list
L in Table 3.

Once we have obtained the main list L, we generate the
Table TðLÞ (see Table 4). Recall that each element is a pair
(record number,field R). For instance (15,(1,4)), in the third row,
means that the cost 5 that appears in the record number 15 of L
comes from rows 1 and 4.

All the above is done only once in the preprocessing phase.

In order to evaluate the objective function we use the following
recursion. Assume that jL(X)j = ‘. Thus, we will consider, ET(L(X)),
the evaluation table of L(X) that has ‘ columns. (See Table 6 in
Example 3.1, ‘ = 4.) We identify the columns in that table by their
consecutive indices. Then, we refer to the elements of each column
by their names and the superscript of the column, namely Fj, cj

ð:Þ,
usedj, f j

k point to the corresponding fields of the jth column in the
evaluation table. For instance, in Example 3.1, j = 2 in Table 6 refers
to the second column which in fact comes from the fourth element
in L. Then, F2 = 4 and c2

ð:Þ ¼ 0. Moreover, let us define usedj,
j = 0, . . . , ‘, as the accumulated ‘used’ field up to the jth column of
ET(L(X)). By convention we assume that used0 ¼ 0. For instance,
in Table 6 of Example 3.1, used3 ¼ used1 þ used2 þ used3 ¼
1þ 1þ 2 ¼ 4 and used4 ¼ 5.

Now, we can properly state the formula of f j
k for j = 0, . . . , ‘. First

of all,

f 0
k ¼ 0; ð3Þ

f j
k ¼ f j�1

k þ
Xusedj

k¼usedj�1þ1

kkcj
ð:Þ: ð4Þ

As mentioned above, from formula (4), we see that the evalua-
tion of fk is linear, once the evaluation Table L(X) is obtained. (No
sorting is needed.)

Example 3.1 (Continuation). With the information previously
obtained, we can easily obtain the evaluation of any solution, for
instance {2,4}, for k = (0,0,1,1,0), namely f(0, 0, 1, 1, 0)({2,4}). First, we
obtain L({2,4}) by merging rows 2 and 4 of Table TðLÞ up to an
accumulated frequency of 5 different elements in the second field
R. (The reader may observe that in each row of the above table, the
cardinality of the union of the elements of the second field of the
pairs in any row of TðLÞ is always M.)
Lðf2;4gÞ ¼ ½ð2; ð2ÞÞ; ð4; ð4ÞÞ; ð11; ð3;5ÞÞ; ð12; ð1ÞÞ�: ð5Þ

Table 6 shows ET(L({2,4})). Bold columns in Table 5 induce the
evaluation table in Table 6. The objective value of the solution {2,4}
is given by the last field fk of the last record in the evaluation table
ET(L({2,4})). In this case the last element of L({2,4}) is (12, (1))
which means that we have to consider the record number 12 in
the list L but only for client 1 (see Table 6).

Finally, to compute the value of the objective function
f(0, 0, 1, 1, 0)({2,4}) one simply needs to process, using the recursive
formula (4), the four records shown in Table 6. The value of the
objective function for the solution {2,4} is 6.

Note that changing the solution from {2,4} to {1,4} can be done
by merging N rows of TðLÞ. First, we compute the list L({1,4}) by
removing from L({2,4}) the elements that correspond to the facility
F2 (row number 2 of TðLÞ) and then we insert the elements from
row number 1 in TðLÞ, up to a frequency of 5 (using that repetitions
of elements in R are not allowed). The resulting list is:

Lðf1;4gÞ ¼ ½ð1; ð1ÞÞ; ð4; ð4ÞÞ; ð6; ð2;5ÞÞ; ð12; ð3ÞÞ�:

Again, the evaluation of the objective function f(0, 0, 1, 1, 0)({1,4})
simply needs to process the following four records shown in
Table 7.

With the recursive formula (4), the value of the objective func-
tion for the solution {1,4} is 2.



Table 6
Evaluation Table ET(L({2,4})) and objective function evaluation.

2 4 11 12

F
R

cð�Þ
used

fk

2
ð2Þ
0
1

0� 0 ¼ 0

2
66664

3
77775

4
ð4Þ
0
1

0þ 0� 0 ¼ 0

2
66664

3
77775

2
ð3;4;5Þ

3
2

0þ 1� 3þ 1� 3 ¼ 6

2
66664

3
77775

4
ð1;3;5Þ

3
1

6þ 0� 3 ¼ 6

2
66664

3
77775

Table 7
Evaluation Table ET(L({1,4})) and objective function evaluation.

1 4 6 12

F
R

cð�Þ
used

fk

1
ð1Þ
0
1

0� 0 ¼ 0

2
66664

3
77775

4
ð4Þ
0
1

0þ 0� 0 ¼ 0

2
66664

3
77775

1
ð2;5Þ

1
2

0þ 1� 1þ 1� 1 ¼ 2

2
66664

3
77775

4
ð1;3;5Þ

3
1

2þ 0� 3 ¼ 2

2
66664

3
77775

Table 5
The main list L. Bold columns are associated to the solution defined by facilities {2,4}.

List L

1 2 3 4 5 6 7 8 9
F
R

cð�Þ
used

fk

1
ð1Þ
0
�
�

2
66664

3
77775

2
ð2Þ
0
1
0

2
66664

3
77775

3
ð3Þ
0
�
�

2
66664

3
77775

4
ð4Þ
0
1
0

2
66664

3
77775

5
ð5Þ
0
�
�

2
66664

3
77775

1
ð2;5Þ

1
�
�

2
66664

3
77775

5
ð3Þ
1
�
�

2
66664

3
77775

3
ð5Þ
2
�
�

2
66664

3
77775

4
ð2Þ
2
�
�

2
66664

3
77775

10 11 12 13 14 15 16 17 18
F

freq
R

cð�Þ
used

fk

5
ð2Þ
2
�
�

2
66664

3
77775

2
ð3;4;5Þ

3
2
6

2
66664

3
77775

4
ð1;3;5Þ

3
1
6

2
66664

3
77775

5
ð1Þ
3
�
�

2
66664

3
77775

2
ð1Þ
4
�
�

2
66664

3
77775

3
ð1;3Þ

5
�
�

2
66664

3
77775

5
ð4Þ
5
�
�

2
66664

3
77775

3
ð2Þ
6
�
�

2
66664

3
77775

1
ð3;4Þ

7
�
�

2
66664

3
77775
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In the following, we describe the modified version of the VNS
algorithm for the DOMP. In the presentation we follow a modular
description. We will describe, in subsections, the different subrou-
tines that we use in the main algorithm. Then, we present its
pseudocode. In the description of the heuristic, we use the follow-
ing notation:

� xcur: current solution (new facilities);
� fcur: current incumbent objective function value;
� goin: index set of the facilities to be inserted in the current

solution;
� goout: index set of the facilities to be deleted from the current

solution;
� g⁄: current objective function value obtained in local

procedures.

In the following four subsections we describe the components
of our modified VNS heuristic for DOMP.

3.2. Initial solution

In this subsection we present the approach that we have fol-
lowed to construct a solution to initialize our VNS heuristic. In or-
der to choose the initial solution, we have compared several
strategies on medium size instances of the problem (pmed16–
pmed25) to conclude which one should be considered in the over-
all computational study. We have tested the following methods:

1. Pure deterministic. Taking as initial solutions those facilities
numbered {1, . . . ,N} in the entire list of facilities.
2. Pure randomization. Choosing N facilities at random.
3. A Greedy algorithm. It works as follows: The first chosen facility

is the one that minimizes the ordered median objective func-
tion assuming that we are interested in the 1-facility case. After
that, in every step we choose the facility with minimal objective
function value taking into account the facilities already
selected. This procedure terminates as soon as N facilities are
chosen.

4. A Random-Greedy construction (RG-construction) (see e.g.
Resende & González-Velarde, 2003). Our construction works
by initially choosing b N/2c facilities at random and then com-
pleting them until N, applying the greedy approach described
above.

We have tested the above methods in order to find the one with
the best performance for our algorithm. Some of them result in
very poor performance (as for instance the pure deterministic)
and therefore were discarded. The remaining methods were com-
bined in order to have the best possible initial solution in any of
the ten executions that we run our heuristic for each instance. In
order to do that, we tested several initialization strategies on med-
ium size instances (pmed16–pmed25) for all problem types and a
fixed upper limit of 300 seconds of CPU time. We report in Table 8
the performance of the three best strategies found: 10 executions
with greedy initial solution (10 G), 1 execution greedy and 9 ran-
dom (1G-9R) and 10 executions with initial solution from the
RG-construction (10 RG).

The best performance was obtained by the RG-construction for
all instances and problem types and therefore, we decided to apply
it as the initialization procedure within our heuristic (see Table 8).



Table 8
Gap for different initialization schemes on problem types T1–T8 and fixed upper limit of 300 seconds of CPU time.

Problem T1 (%) T2 (%) T3 (%)

10 G 1G-9R 10-GR 10 G 1G-9R 10-GR 10 G 1G-9R 10-GR

pmed16 0.02 0.00 0.00 6.38 0.00 0.00 0.00 0.00 0.00
pmed17 0.01 0.00 0.00 2.56 2.56 0.00 0.00 0.00 0.00
pmed18 0.08 0.00 0.00 32.14 32.14 32.14 0.03 0.00 0.00
pmed19 0.67 0.04 0.00 61.11 61.11 22.22 0.22 0.00 0.00
pmed20 0.28 0.28 0.22 130.77 130.77 61.54 0.08 0.08 0.08
pmed21 0.02 0.00 0.00 7.50 0.00 0.00 0.07 0.00 0.00
pmed22 1.05 0.00 0.00 2.63 2.63 2.63 0.09 0.00 0.00
pmed23 0.09 0.00 0.00 36.36 36.36 36.36 0.04 0.04 0.04
pmed24 0.20 0.00 0.00 53.33 53.33 53.33 0.16 0.16 0.16
pmed25 0.71 0.05 0.05 100.00 100.00 63.64 0.23 0.23 0.00

Avrg. GAP 0.29 0.04 0.03 43.28 41.89 27.19 0.09 0.05 0.03

T4 T5 T6

10 G 1G-9R 10-GR 10 G 1G-9R 10-GR 10 G 1G-9R 10-GR

pmed16 0.00 0.00 0.00 0.05 0.00 0.00 0.05 0.00 0.00
pmed17 0.11 0.00 0.00 0.14 0.00 0.00 0.00 0.00 0.00
pmed18 0.12 0.00 0.00 0.08 0.00 0.00 0.13 0.00 0.00
pmed19 0.31 0.00 0.00 0.35 0.00 0.00 0.35 0.14 0.14
pmed20 0.70 0.35 0.35 0.44 0.33 0.33 0.67 0.56 0.00
pmed21 0.07 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
pmed22 0.04 0.00 0.00 0.07 0.00 0.00 0.07 0.00 0.00
pmed23 0.18 0.00 0.00 0.17 0.00 0.00 0.17 0.00 0.00
pmed24 0.20 0.10 0.10 0.54 0.00 0.00 0.27 0.00 0.00
pmed25 0.35 0.17 0.00 0.65 0.22 0.11 0.44 0.00 0.00

Avrg. GAP 0.21 0.06 0.04 0.25 0.05 0.04 0.22 0.07 0.01

T7 T8

10 G 1G-9R 10-GR 10 G 1G-9R 10-GR

pmed16 0.00 0.00 0.00 0.00 0.00 0.00
pmed17 0.09 0.00 0.00 0.13 0.00 0.00
pmed18 0.12 0.09 0.06 0.37 0.37 0.12
pmed19 0.16 0.00 0.00 0.42 0.00 0.00
pmed20 0.34 0.00 0.00 0.50 0.50 0.50
pmed21 0.00 0.00 0.00 0.00 0.00 0.00
pmed22 0.03 0.00 0.00 0.00 0.00 0.00
pmed23 0.10 0.00 0.00 0.51 0.00 0.00
pmed24 0.20 0.00 0.00 0.71 0.00 0.00
pmed25 0.41 0.16 0.16 0.16 0.16 0.00
Avrg. GAP 0.14 0.03 0.02 0.28 0.10 0.06

Table 9
Local search routines.

IN–OUT Tmax = 30 seconds.

First-Guided Best-Guided First-Best Best–Best

T1
Avrg. Obj. 6273.40 6178.33 6494.65 6318.85
Avrg. Gap (%) 23.95 22.30 29.63 27.67
Num. Opt. 1 14 0 22

T4
Avrg. Obj. 4696.80 4624.03 4905.33 4756.08
Avrg. Gap (%) 24.33 23.04 32.22 30.99
Num. Opt. 2 16 0 21
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3.3. Local search: Variable Neighborhood Descent (VND)

This procedure shows how to modify/update the objective func-
tion when a given solution is updated. In our descent phase we
search deterministically within the neighborhoods’ structures gi-
ven by the family Nkr described above. We use only two different
k-interchange neighborhoods’ structures Nkr corresponding to
r 2 {dc(G)/2e,c(G)}. This means that when searching within the first
neighborhood structure ðNkdcðGÞ=2eÞ, we only allow allocation costs
that are less than or equal to dc(G)/2e, whereas in the second neigh-
borhood structure ðNkcðGÞ Þ we allow any allocation cost. The maxi-
mal cardinality k0max of the set of facilities to be added to a partial
solution in our VND is a parameter that must be chosen in the
implementation. Note that this parameter k0max determines the
neighborhood structure Nkr used in the search phase. First of all,
we have used two approaches to choose the set, goin, of new facil-
ities to be added to the current solution. The first one is a First
improvement scheme that looks, in the neighborhood of the current
solution, only for the first improvement found. The second one is a
Best improvement that looks for new solutions amongst all the
neighbors of the current solution in order to choose the best one.
These two approaches to add facilities to the current solution have
been combined with the different strategies, used in the routine
goout, to select the facilities to be removed from the current solu-
tion. (The different combinations can be seen in Table 9.)
Since, we have already described the two methods for choosing
the set goin, we will assume, from now on, that the set of facilities
that is added to the current solution is known.

We have tested two methods for choosing the set goout, of facil-
ities to be removed from a solution. The first one does a non-
guided search on the current neighborhood within a pre-specified
time limit and the second one selects these facilities according to a
list of preferences P, that provides a heuristic order to choose solu-
tions within the neighborhoods’ structures. This list is computed
only once at the preprocessing phase.
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The rationale of this heuristic order is based on the following con-
struction. For each feasible facility j we compute the value fk({j}), i.e.,
the solution of the 1-ordered median problem provided that the only
open facility is j. The greater the value fk, the lower the performance
that one expects for that facility in any solution. Therefore, we set the
list of preferences in decreasing order with respect to these values.
Algorithms 3.1 and 3.2 describe the two methods to choose the set
goout, namely by the Best update (non-guided) or by the guided list
of preferences, Guided update, respectively.

Algorithm 3.1. Best update (c,k,xcur, fcur,goin,M,N,k, P,tmax, var g⁄,
var goout⁄)
Table 10
Determining the size kmax.

(Tmax = 600 seconds)

kmax = 3 kmax = 5

VNS with Best-Guided Best–Best Best-Gui

T1
Avrg.Obj. 5750.18 6096.25 5766.18
Avrg.Gap 7.67% 20.05% 6.24%
Num.Opt. 20 22 22

T4
Avrg.Obj. 4283.53 4587.18 4291.48
Avrg.Gap 6.13% 22.33% 5.43%
Num.Opt. 20 24 23

Algorithm 3.2. Guided update (c,k,xcur, fcur,goin,M,N,k, P, tmax, var
g⁄, var goout⁄)
Finally, based on the different schemes to choose the sets goin
and goout, the pseudocode of the local search VND routine that
we have implemented within our VNS heuristic is described in
the Algorithm 3.3.

In the pseudocode of Algorithm 3.3, we show a new version of
VND, where goin is actually a set, i.e., in an exhaustive search it
would enumerate all possible subsets of facilities with cardinality
k. Nevertheless, in our implementation we use the strategy of
stopping the exploration based on the number of unsuccessful at-
tempts at improvement. Specifically, we terminate the exploration
of this neighborhood if this value is greater than N.
kmax = 10

ded Best–Best Best-Guided Best–Best

6095.83 5799.73 6099.76
20.05% 9.05% 18.09
16 18 15

4589.98 4307.05 4508.02
22.48% 7.27% 20.07
18 18 16
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Algorithm 3.3. VND (c,c(G),k,xcur, fcur,goin,M,N, k0max;P, var f0,
var x0cur)
Table 9 reports the computational results of the different com-
binations of strategies for choosing the sets goin and goout in the
VND routine. We have tested the approaches First/Best for goin
and Guided/Best for goout, for the 40 benchmark instances consid-
ered (ORLIB N-median instances) and on problem types T1 and T4
(see Section 4 for their descriptions). The choices, First/Best, mean
that selection for goin is based on first improvement/exhaustive
search, respectively. On the other hand, the options Guided/Best,
mean that selection for goout is based on the preference list de-
scribed in Section 3.3 (see Algorithm 3.2) or on the best improve-
ment (see Algorithm 3.1).

Table 9 has two blocks. The first one reports on the results for
the problem T1 and the second one for problem T4 (see Section 4).
We have run the VND routine with a time limit of 30 seconds for
the four possible combinations of IN-OUT. Each block reports the
average objective value, Avrg. Obj.; the average gap, Avrg.Gap, and
the number of optimal solutions found, Num.Opt. for the 40 consid-
ered instances of N-median problems in ORLIB. From these results,
Table 11
CPU2000 results published by standards performance evaluation corporation.

CPU INTEL P.IV
1.8 gigahertz

AMD Sempron
1.6 gigahertz

INTEL P.III
0.8 gigahertz

CPU speed 633 587 417
Factor 633/633 587/633 417/633
we conclude that the best combinations for the implementation of
goin–goout are Best-Guided and Best-Best (see Table 9).
3.4. Shaking

In our implementation of the VNS, we have tested two shaking
operators. The first one consists of choosing at random the set goin
and selecting, according to a priority list, the set goout; whereas the
second one chooses at random, both the sets goin and goout. Our
computational experiments have shown that the second one
performs better in terms of running times and quality of solutions.
Therefore, our results are based on this second option.

In the Shaking operator step, the incumbent solution xopt is per-
turbed in such a way that jxcurnxoptj = k. Nevertheless, this step does
not guarantee that xcur belongs toN krðxoptÞ due to randomization of
the choice of goin and possible reinsertion of the same facility after
it has been removed in the goout phase. Then, xcur is used as initial
solution for VND routine in Local Search step. If a solution better
than xopt is obtained, we move there and start again with small per-
turbations of this new best solution, i.e., k 1. Otherwise, we in-
crease the distance between xopt and the new randomly generated
point, i.e., we set k k + 1. If k reaches kmax (this parameter can be
chosen equal to N), we return to Main step (within the modified
VNS algorithm described in Section 3.5), i.e., the main step can
be iterated until some other stopping condition is met (e.g. maxi-
mum number of iterations, maximum CPU time allowed, or maxi-
mum number of iterations between two improvements). Note that
the element xcur is generated at random in Shaking operator step in
order to avoid cycling which might occur if any deterministic rule
were used.
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Table 10 reports the results of the computational tests that we
have compared in order to set the maximum size of the family of
neighbors to be used in the algorithm. We have compared three
different sizes kmax = 3, 5, 10 on problem types T1 and T4 (see Sec-
tion 4). In order to do that, we ran the algorithm with a time limit
of 600 seconds and for the best two VND searches, namely ‘‘Best-
Guided’’ and ‘‘Best–Best’’. From the results we conclude that the
best results are obtained using ‘‘Best-Guided’’ as VND routine
and with a number of facilities replaced in each iteration of kmax = 5
(see Table 10).

Algorithm 3.4. Modified VNS for the DOMP
3.5. Modified variable neighborhood search

We present in Algorithm 3.4, the Modified Variable Neighbor-
hood Search (MOD-VNS) heuristic for DOMP. In its description
we refer to the procedures described in Section 3.4. The algorithm
has three main phases: (1) Preprocessing that sets the data struc-
ture used in the evaluation and update of new solutions and (2)
Initialization that sets the initial solution, stopping criterion, etc.
Finally, the third phase Main step that is the main loop including
the Shaking operator and the Local Search (VND) which actually runs
the VNS heuristic.
4. Computational results

In this section, we compare the results of MOD-VNS algorithm
with existing algorithms from the literature. All test were imple-
mented in C and compiled with Microsoft Visual C++ 6.0 and were
run on a Pentium 4 at 1.8 gigahertz. with 1 GB of RAM. Our results
are based on the benchmark instances of the ORLIB N-median data
set publicly available electronically from http://people.brun-
el.ac.uk/�mastjjb/jeb/info.html (see Beasley (1990)). As in previ-
ous papers on this topic, we considered N-median instances with
100 6M 6 900 nodes and 5 6 N 6 200 potential new facilities
and solved them for 8 different classes of k-parameters already
suggested in the literature. Each k is associated with a different

https://people.brunel.ac.uk/~mastjjb/jeb/info.html
https://people.brunel.ac.uk/~mastjjb/jeb/info.html
https://people.brunel.ac.uk/~mastjjb/jeb/info.html


Table 12
Results for T1 (N-median).

Instance M N OPT HGA1 VNS MOD-VNS

OBJ T GAP (%) OBJ T GAP (%) OBJ T GAP (%)

pmed1 100 5 5819 5819 1.64 0.00 5819 1.19 0.00 5819 0.00 0.00
pmed2 100 10 4093 4093 2.06 0.00 4093 2.97 0.00 4093 0.28 0.00
pmed3 100 10 4250 4250 1.89 0.00 4250 3.00 0.00 4250 0.00 0.00
pmed4 100 20 3034 3034 2.85 0.00 3046 5.98 0.40 3034 1.04 0.00
pmed5 100 33 1355 1355 3.35 0.00 1358 6.81 0.22 1355 0.87 0.00

pmed6 200 5 7824 7824 4.18 0.00 7824 7.95 0.00 7824 0.00 0.00
pmed7 200 10 5631 5631 5.84 0.00 5639 12.72 0.14 5631 0.00 0.00
pmed8 200 20 4445 4445 7.53 0.00 4457 21.05 0.27 4445 0.00 0.00
pmed9 200 40 2734 2734 8.15 0.00 2753 41.98 0.69 2734 31.26 0.00
pmed10 200 67 1255 1259 11.05 0.32 1259 72.22 0.32 1255 149.64 0.00

pmed11 300 5 7696 7696 7.30 0.00 7696 12.52 0.00 7696 0.00 0.00
pmed12 300 10 6634 6634 12.92 0.00 6634 26.02 0.00 6634 0.00 0.00
pmed13 300 30 4374 4374 13.26 0.00 4374 87.92 0.00 4374 0.00 0.00
pmed14 300 60 2968 2969 20.88 0.03 2969 241.95 0.03 2968 52.97 0.00
pmed15 300 100 1729 1736 26.85 0.40 1739 363.39 0.58 1729 23.00 0.00

pmed16 400 5 8162 8162 13.65 0.00 8162 24.36 0.00 8162 0.00 0.00
pmed17 400 10 6999 6999 24.81 0.00 6999 47.30 0.00 6999 2.02 0.00
pmed18 400 40 4809 4809 22.91 0.00 4811 275.69 0.04 4809 71.95 0.00
pmed19 400 80 2845 2851 46.71 0.21 2864 469.30 0.67 2845 286.63 0.00
pmed20 400 133 1789 1794 56.24 0.28 1790 915.17 0.06 1794 302.24 0.28

pmed21 500 5 9138 9138 15.32 0.00 9138 27.39 0.00 9138 0.00 0.00
pmed22 500 10 8579 8579 36.01 0.00 8669 64.25 1.05 8579 0.00 0.00
pmed23 500 50 4619 4624 41.36 0.11 4619 443.23 0.00 4619 18.63 0.00
pmed24 500 100 2961 2966 89.33 0.17 2967 1382.84 0.20 2961 333.94 0.00

pmed25 500 167 1828 1838 125.68 0.55 1841 2297.25 0.71 1829 225.66 0.05
pmed26 600 5 9917 9917 25.02 0.00 9917 48.45 0.00 9917 0.00 0.00
pmed27 600 10 8307 8330 39.92 0.28 8310 127.63 0.04 8307 0.00 0.00
pmed28 600 60 4498 4500 75.29 0.04 4508 965.48 0.22 4499 270.64 0.02
pmed29 600 120 3033 3036 149.39 0.10 3036 2758.56 0.10 3038 160.11 0.16

pmed30 600 200 1989 2008 194.85 0.96 2009 3002.34 1.01 1993 203.25 0.20
pmed31 700 5 10,086 10,086 25.86 0.00 10,086 56.02 0.00 10,086 0.00 0.00
pmed32 700 10 9297 9297 59.80 0.00 9301 165.27 0.04 9297 0.00 0.00
pmed33 700 70 4700 4719 105.54 0.40 4705 2311.03 0.11 4702 110.18 0.04
pmed34 700 140 3013 3027 237.58 0.46 3024 5384.19 0.37 3020 239.11 0.23
pmed35 800 5 10,400 10,400 34.14 0.00 10,400 88.50 0.00 10,400 0.00 0.00

pmed36 800 10 9934 9951 63.58 0.17 9934 200.97 0.00 9934 17.22 0.00
pmed37 800 80 5057 5063 124.30 0.12 5066 2830.30 0.18 5063 125.30 0.12
pmed38 900 5 11,060 11,060 47.65 0.00 11,060 150.53 0.00 11,060 0.00 0.00
pmed39 900 10 9423 9423 68.02 0.00 9423 200.73 0.00 9423 0.00 0.00
pmed40 900 90 5128 5133 374.80 0.10 5141 4774.38 0.25 5140 301.00 0.23

Avrg. 5535.30 5539.08 51.79 0.12 5542.25 493.63 0.19 5536.38 73.17 0.03
# Best 23 14 17 0 31 26
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objective function and it models different types of DOMP, as al-
ready indicated in Section 2. The k-parameters considered in our
experiments are:

� T1: k = (1, . . . ,1), vector corresponding to the N-median
problem.
� T2: k = (0, . . . ,0,1), vector corresponding to the N-center

problem.
� T3: k ¼ ð0; . . . ;0;1; . . . ;1|fflfflfflffl{zfflfflfflffl}

k

Þ, vector corresponding to the k-cen-

trum problem, where k ¼ bM3c.
� T4: k ¼ ð0; . . . ; 0|fflfflfflffl{zfflfflfflffl}

k1

;1; . . . ;1;0; . . . ;0|fflfflfflffl{zfflfflfflffl}
k2

Þ, vector corresponding to the

(k1,k2)-trimmed mean problem, where k1 ¼ N þ dM
10e and

k2 ¼ dM
10e.

� T5: k ¼ ð0;1;0;1; . . . ;0;1;0;1Þ if M is even
ð0;1;0;1; . . . ;0;1;0Þ otherwise

�
, vector corre-

sponding to an alternate series of zeroes and ones starting with

zero.
� T6: k ¼ ð1;0;1;0; . . . ;1;0;1;0Þ if M is even
ð1;0;1;0; . . . ;1;0;1Þ otherwise

�
, vector corre-

sponding to an alternate series of zeroes and ones starting with

one.
� T7: k ¼

ð0;1;1;0;1;1; . . . ;0;1;1;0;1;1Þ if M 	 0 ðmod 3Þ
ð0;1;1;0;1;1; . . . ;0;1;1;0Þ if M 	 1 ðmod 3Þ
ð0;1;1;0;1;1; . . . ;0;1;1;0;1Þ if M 	 2 ðmod 3Þ

8<
: ,

vector corresponding to an alternate series of zeroes and two
consecutive ones starting with zero.

� T8: k ¼
ð0;0;1;0;0;1; . . . ;0;0;1;0;0;1Þ if M 	 0 ðmod 3Þ
ð0;0;1;0;0;1; . . . ;0;0;1;0Þ if M 	 1 ðmod 3Þ
ð0;0;1;0;0;1; . . . ;0;0;1;0;0Þ if M 	 2 ðmod 3Þ

8<
: ,

vector corresponding to an alternate series of two consecutive
zeroes and one starting with zero.

Our stopping criterion is based on running time. We fixed a
time limit of 200 seconds for the small size instances (those up
to 400 nodes) and we raised the time limit to 600 seconds for
the large size instances (those with more than 400 nodes).
We run MOD-VNS algorithm 10 times for each instance. In all
the executions MOD-VNS is initialized by the solution of the
RG-construction as described in Section 3.2. We report the best



Table 13
Results for T2 (N-center) and T3.

T2 T3

HGA1 MOD-VNS HGA1 MOD-VNS

BEST OBJ T GAP (%) OBJ T GAP (%) BEST OBJ T GAP (%) OBJ T GAP (%)

127 127 2.18 0.00 127 0.08 0.00 3148 3148 1.74 0.00 3148 0.70 0.00
98 98 2.50 0.00 98 1.59 0.00 2444 2444 2.36 0.00 2444 0.22 0.00
93 94 2.76 1.08 93 0.25 0.00 2452 2452 2.06 0.00 2452 0.19 0.00
74 79 3.72 6.76 74 14.29 0.00 1941 1961 2.32 1.03 1941 3.02 0.00
48 49 6.18 2.08 48 5.99 0.00 1072 1072 2.36 0.00 1072 1.34 0.00

84 84 6.10 0.00 84 0.69 0.00 4163 4163 4.00 0.00 4163 3.23 0.00
64 64 10.10 0.00 64 1.03 0.00 3157 3157 9.91 0.00 3157 2.53 0.00
55 58 15.05 5.45 55 91.94 0.00 2630 2630 6.46 0.00 2630 3.50 0.00
37 44 22.83 18.92 40 111.14 8.11 1844 1856 9.12 0.65 1844 77.40 0.00
20 32 20.63 60.00 31 82.49 55.00 931 933 11.21 0.21 931 2.18 0.00

59 59 9.68 0.00 59 14.52 0.00 4115 4115 7.83 0.00 4115 4.62 0.00
51 52 17.79 1.96 51 13.92 0.00 3613 3613 12.67 0.00 3613 13.56 0.00
36 41 40.78 13.89 40 134.25 11.11 2698 2705 12.79 0.26 2698 86.06 0.00
26 35 59.80 34.62 37 143.33 42.31 1935 1943 21.71 0.41 1935 15.01 0.00
18 26 65.55 44.44 29 116.53 61.11 1285 1293 27.22 0.62 1285 205.70 0.00

47 47 16.14 0.00 47 0.67 0.00 4220 4220 11.85 0.00 4220 9.88 0.00
39 40 35.99 2.56 39 38.73 0.00 3746 3746 23.38 0.00 3746 12.54 0.00
28 37 83.99 32.14 37 265.84 32.14 2859 2867 26.70 0.28 2859 25.16 0.00
18 29 114.32 61.11 22 109.85 22.22 1826 1826 30.29 0.00 1826 29.94 0.00
13 32 68.19 146.15 21 103.50 61.54 1311 1311 72.85 0.00 1312 286.10 0.08

40 40 21.83 0.00 40 1.13 0.00 4612 4612 20.24 0.00 4612 13.56 0.00
38 39 47.49 2.63 39 113.16 2.63 4466 4466 35.81 0.00 4466 18.03 0.00
22 30 135.25 36.36 30 421.71 36.36 2789 2789 41.89 0.00 2790 30.02 0.04
15 23 178.54 53.33 23 405.25 53.33 1903 1906 78.43 0.16 1906 38.01 0.16
11 22 341.59 100.00 18 59.33 63.54 1330 1330 151.70 0.00 1330 33.52 0.00

38 38 31.35 0.00 38 3.25 0.00 4975 4975 21.34 0.00 4975 22.10 0.00
32 34 66.96 6.25 32 319.98 0.00 4389 4389 57.22 0.00 4389 12.11 0.00
18 24 218.75 33.33 24 254.78 33.33 2682 2688 89.97 0.22 2682 94.84 0.00
13 22 514.81 69.23 23 217.25 76.92 1962 1962 188.12 0.00 1964 51.47 0.10

9 20 435.86 122.22 16 64.92 77.78 1405 1405 197.89 0.00 1405 40.78 0.00

30 30 41.63 0.00 30 2.55 0.00 4923 4923 28.49 0.00 4923 32.00 0.00
29 30 98.13 3.45 30 85.17 3.45 4772 4772 59.34 0.00 4772 63.00 0.00
15 22 326.79 46.67 23 187.53 53.33 2782 2787 108.96 0.18 2782 36.05 0.00
11 22 566.68 100.00 20 53.91 81.82 1970 1977 199.76 0.36 1976 190.64 0.30
30 30 51.96 0.00 30 9.33 0.00 5089 5089 34.11 0.00 5089 37.20 0.00

27 29 103.40 7.41 28 35.19 3.70 5009 5009 70.88 0.00 5009 9.30 0.00
15 23 517.40 53.33 23 27.88 53.33 3002 3002 213.44 0.00 3018 211.21 0.53
29 29 80.46 0.00 29 1.62 0.00 5364 5364 49.46 0.00 5364 3.19 0.00
23 25 163.18 8.70 24 34.36 4.35 4772 4772 65.12 0.00 4772 6.20 0.00
13 21 699.29 61.54 22 51.40 69.23 2992 2992 241.33 0.00 2995 299.70 0.10

Avrg. 42.00 121.96 28.39 40.93 90.01 22.58 Avrg. 3066.60 52.37 0.11 3065.25 50.65 0.03
# Best 11 16 18 24 # Best 31 12 33 28
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solution found among these 10 executions. Since the CPU we used
and those used by other authors are different (AMD Semprom 1.6
Stanimirovic et al., 2007 and pentium III 0.8 Domínguez-Marín
et al., 2005), average running times were scaled down by the
appropriate factors according to published standards. (See CPU
speed benchmarks at http://www.spec.org/cpu2000/ in Table 11).

In the following we describe, in an exhaustive way, our compu-
tational results. We report detailed results on the execution of
MOD-VNS for the 8 types of k-parameters on the 40 N-median in-
stances of the ORLIB. We also compare our results with those avail-
able from the papers by Domínguez-Marín et al. (2005) and
Stanimirovic et al. (2007). Problems T1 and T4 were reported on
both papers, whereas results for problems T2, T3 and T5–T8 are
only available from the second paper. Nevertheless, we are also
interested in comparing our new implementation of VNS with
the one in Domínguez-Marín et al. (2005). Therefore, we report
the comparisons in different formats. Tables 12 and 14 include
the results of the VNS in Domínguez-Marín et al. (2005), the
HGA1 given in Stanimirovic et al. (2007) and our results obtained
by MOD-VNS. In addition, in Tables 13, 15 and 16 we report on
the comparison of MOD-VNS and the genetic algorithm HGA1 in
Stanimirovic et al. (2007). In order to compare the quality of our
results, we use the best known solutions found that have been re-
ported either by Domínguez-Marín et al. (2005) and/or Stanimiro-
vic et al. (2007), with the exception of problems’ type T1 where we
use those reported by Beasley in Beasley (1990).

To assess the performance of our VNS, we show comparative re-
sults on these benchmark instances. The main criteria used for
comparisons are the ones commonly used in the literature: gap
and computing times. Consequently and like many previous stud-
ies, we make our comparisons based on information such as num-

https://www.spec.org/cpu2000/


Table 14
Results for T4 (k1,k2)-trimmed mean.

HGA1 VNS MOD-VNS

BEST OBJ T GAP (%) OBJ T GAP (%) OBJ T GAP (%)

4523 4523 1.58 0.00 4523 1.27 0.00 4523 0.00 0.00
2987 2987 2.02 0.00 2987 3.80 0.00 2987 0.00 0.00
3067 3067 1.91 0.00 3074 2.80 0.23 3067 0.29 0.00
2137 2137 2.59 0.00 2142 6.98 0.23 2137 0.14 0.00

818 818 3.06 0.00 818 8.22 0.00 818 0.00 0.00

6064 6064 4.25 0.00 6079 7.88 0.25 6064 0.11 0.00
4206 4206 6.53 0.00 4206 13.41 0.00 4206 0.00 0.00
3182 3182 8.13 0.00 3182 28.30 0.00 3182 0.00 0.00
1807 1807 8.75 0.00 1816 66.39 0.50 1807 0.00 0.00

818 823 11.63 0.61 829 75.91 1.34 818 29.95 0.00

5979 5979 7.45 0.00 5979 13.30 0.00 5979 0.00 0.00
5021 5021 10.21 0.00 5021 25.86 0.00 5021 0.00 0.00
3133 3133 12.31 0.00 3133 97.80 0.00 3133 17.48 0.00
1946 1950 29.76 0.21 1957 303.64 0.57 1946 25.82 0.00
1129 1134 46.68 0.44 1133 415.80 0.35 1129 119.90 0.00

6341 6341 11.53 0.00 6341 24.13 0.00 6341 0.01 0.00
5381 5381 18.54 0.00 5413 43.83 0.59 5381 1.46 0.00
3437 3437 28.00 0.00 3443 261.86 0.17 3437 9.35 0.00
1921 1926 30.65 0.26 1933 779.77 0.62 1921 103.50 0.00
1146 1150 101.60 0.35 1152 1108.48 0.52 1150 125.90 0.35

7245 7245 15.16 0.00 7245 24.22 0.00 7245 0.01 0.00
6685 6685 34.91 0.00 6722 58.58 0.55 6685 0.00 0.00
3306 3307 42.84 0.03 3306 639.95 0.00 3306 13.32 0.00
2002 2004 64.45 0.10 2005 1455.81 0.15 2004 258.05 0.10
1148 1148 244.77 0.00 1151 2552.02 0.26 1148 274.44 0.00

7787 7787 20.37 0.00 7787 48.11 0.00 7787 1.51 0.00
6444 6444 37.62 0.00 6444 141.70 0.00 6444 0.01 0.00
3200 3202 76.60 0.06 3210 1113.89 0.31 3200 118.80 0.00
2004 2005 107.39 0.05 2006 3178.69 0.10 2004 258.10 0.00
1290 1296 329.52 0.47 1308 4942.75 1.40 1290 276.23 0.00

8044 8046 31.50 0.02 8046 66.16 0.02 8046 53.80 0.02
7277 7278 44.82 0.01 7280 162.97 0.04 7277 234.60 0.00
3403 3403 108.81 0.00 3413 2377.72 0.29 3403 221.48 0.00
2023 2033 233.71 0.49 2023 5657.56 0.00 2023 247.70 0.00
8191 8191 37.22 0.00 8191 72.58 0.00 8191 1.01 0.00

7796 7796 101.99 0.00 7820 201.64 0.31 7796 2.36 0.00
3598 3600 181.60 0.06 3604 3170.70 0.17 3600 199.01 0.06
8720 8720 41.90 0.00 8720 140.84 0.00 8720 0.00 0.00
7360 7360 70.55 0.00 7360 313.03 0.00 7360 0.00 0.00
3710 3710 316.02 0.00 3718 5422.73 0.22 3715 295.32 0.13

Avrg. 4158.15 57.86 0.08 4163.00 578.01 0.23 4157.28 72.24 0.02
# Best 26 14 17 0 35 26
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ber of best solutions found, CPU time and gap obtained by each
algorithm.

Since our test problems for all problem types are based on
the same 40 N-median instances of the ORLIB, we only include
their names and sizes, i.e. number of nodes (M) and number of
facilities to be located (N), in our first table, namely Table 12.
We also remark that the last two rows in all tables report,
respectively, the averages of the corresponding columns (one
to the last row) and the number of times that the best result
(either CPU time or objective function value) is obtained in that
column (last row).

Tables 12 and 14 present the detailed computational results of
MOD-VNS as well as those obtained by VNS and HGA1, over the
benchmark instances for the problem types T1 and T4. In these ta-
bles, we indicate the optimal or best known objective function val-
ues in the columns (OPT) in Table 12 and (BEST) in Table 14. The
remaining columns show the objective values (OBJ), the running
times in seconds (T) and the gap (GAP) obtained by each algorithm.
(The reader should observe that 0.00 in columns T means that the
CPU time was less that 0.01 seconds.)

Table 12 reports the results of MOD-VNS algorithm applied to
problem type T1. We observe that the number of optimal solutions
found are 31 out of 40 (31/40) for MOD-VNS, 23 out of 40 (23/40)
for HGA1 and 17 out of 40 (17/40) for VNS. MOD-VNS takes clear
advantage with respect to VNS in all rates, there is a tradeoff be-
tween quality of the solution and computing time required to ob-
tain this solution: the average time is equal to 493.63 scaled
seconds for VNS and 73.17 scaled seconds for MOD-VNS (less than
15% of the required running time). Notice that the maximal com-
puting time required by MOD-VNS does not exceed 335 seconds,
whereas the maximum time required by VNS was almost
4774 seconds.

The reader may also observe that the quality of the solutions
provided by MOD-VNS (gap of 0.03%, on average) is comparable,
although slightly better than that of HGA1 (0.12%, on average).
Nevertheless, running time required by MOD-VNS is larger on



Table 15
Results for T5 and T6.

T5 T6

HGA1 MOD-VNS HGA1 MOD-VNS

BEST OBJ T GAP (%) OBJ T GAP (%) BEST OBJ T GAP (%) OBJ T GAP (%)

2941 2941 1.56 0.00 2941 0.00 0.00 2873 2873 1.67 0.00 2873 0.00 0.00
2075 2075 2.12 0.00 2075 0.35 0.00 2011 2018 2.02 0.35 2011 0.52 0.00
2160 2160 2.13 0.00 2160 0.50 0.00 2062 2062 1.85 0.00 2062 0.66 0.00
1532 1537 2.28 0.33 1532 2.36 0.00 1491 1497 2.44 0.40 1491 2.58 0.00

689 691 3.25 0.29 689 2.85 0.00 662 662 2.90 0.00 662 0.34 0.00

3938 3938 4.57 0.00 3938 0.00 0.00 3884 3884 4.25 0.00 3884 0.00 0.00
2835 2835 8.70 0.00 2835 0.00 0.00 2795 2795 6.62 0.00 2795 0.00 0.00
2244 2244 6.31 0.00 2244 0.00 0.00 2190 2190 7.50 0.00 2190 1.65 0.00
1374 1380 9.05 0.44 1374 182.61 0.00 1343 1349 10.68 0.45 1343 13.52 0.00

632 633 10.60 0.16 632 148.48 0.00 619 619 8.94 0.00 619 34.45 0.00

3869 3869 7.74 0.00 3869 0.00 0.00 3827 3827 7.32 0.00 3827 0.00 0.00
3344 3344 15.60 0.00 3344 0.21 0.00 3288 3288 12.64 0.00 3288 0.00 0.00
2198 2198 15.48 0.00 2198 5.83 0.00 2173 2173 14.76 0.00 2173 18.56 0.00
1490 1493 17.87 0.20 1490 11.08 0.00 1474 1479 21.12 0.34 1474 99.28 0.00

870 870 29.21 0.00 870 45.59 0.00 861 861 29.59 0.00 861 87.43 0.00

4094 4094 12.93 0.00 4094 0.44 0.00 4065 4065 15.65 0.00 4065 0.27 0.00
3512 3512 23.84 0.00 3512 2.71 0.00 3487 3487 23.26 0.00 3487 0.00 0.00
2414 2415 30.58 0.04 2414 215.99 0.00 2388 2388 33.90 0.00 2388 96.41 0.00
1430 1430 55.44 0.00 1430 282.61 0.00 1418 1420 47.16 0.14 1420 82.88 0.14

905 909 48.75 0.44 908 281.46 0.33 895 895 93.08 0.00 895 86.17 0.00

4578 4578 15.10 0.00 4578 0.00 0.00 4560 4560 15.57 0.00 4560 0.00 0.00
4310 4310 35.20 0.00 4310 0.00 0.00 4269 4269 27.58 0.00 4269 2.83 0.00
2317 2319 48.96 0.09 2317 46.47 0.00 2296 2303 62.13 0.30 2296 164.44 0.00
1485 1485 86.15 0.00 1485 90.43 0.00 1477 1477 84.43 0.00 1477 71.11 0.00

924 924 164.65 0.00 924 178.05 0.00 914 914 211.89 0.00 914 101.81 0.00

4970 4970 25.52 0.00 4970 1.47 0.00 4945 4945 22.77 0.00 4945 0.00 0.00
4162 4162 44.95 0.00 4162 11.99 0.00 4143 4143 42.61 0.00 4143 0.00 0.00
2255 2257 86.45 0.09 2255 87.70 0.00 2243 2243 82.71 0.00 2243 233.23 0.00
1524 1530 148.33 0.39 1527 154.92 0.20 1515 1517 152.67 0.13 1520 154.70 0.33
1009 1009 357.46 0.00 1010 309.70 0.10 1000 1000 216.69 0.00 1000 212.13 0.00

5054 5054 31.54 0.00 5054 1.42 0.00 5031 5031 30.25 0.00 5031 0.00 0.00
4683 4683 54.65 0.00 4683 3.16 0.00 4610 4610 48.91 0.00 4610 0.00 0.00
2356 2360 125.45 0.17 2357 235.5 0.04 2346 2346 116.57 0.00 2346 120.63 0.00
1517 1517 288.22 0.00 1518 225.3 0.07 1511 1511 310.53 0.00 1515 311.20 0.26
5209 5209 34.15 0.00 5209 0.001 0.00 5189 5189 36.08 0.00 5189 0.00 0.00

4981 4981 80.25 0.00 4981 4.98 0.00 4953 4953 101.03 0.00 4953 7.24 0.00
2540 2540 198.20 0.00 2540 240.20 0.00 2522 2522 240.44 0.00 2525 152.34 0.12
5542 5542 40.97 0.00 5542 0.00 0.00 5518 5518 46.78 0.00 5518 1.62 0.00
4745 4745 58.95 0.00 4745 0.00 0.00 4678 4678 66.50 0.00 4678 0.00 0.00
2578 2578 344.49 0.00 2582 319.30 0.16 2566 2566 211.50 0.00 2567 213.50 0.04

Avrg. 2783.03 59.92 0.07 2782.45 77.34 0.02 Avrg. 2753.18 57.54 0.05 2752.68 56.51 0.02
# Best 30 13 34 27 # Best 33 14 35 26
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average than the running time for HGA1 although in 26 out of the
40 (26/40) instances MOD-VNS required less CPU time than HGA1
to find the best solution. This shows a similar behavior of both
algorithms on problems of type T1.

Table 14 reports the comparisons, in the same format as above,
for problem type T4 ((k1,k2)-trimmed mean problem). Optimal
solutions for these problems on N-median instances are not known
so far, so we considered the best known solutions reported in the
literature. MOD-VNS reached 35 out of 40 (35/40), HGA1 26 out
of 40 (26/40) and VNS 17 out of 40 (17/40) of the best-known solu-
tions. The behavior of MOD-VNS applied to T4 is quite similar to
T1. We can observe that after a reasonable computing time
MOD-VNS and HGA1 solve large (k1,k2)-trimmed mean problems.
The computing time required by HGA1 (57.86 seconds, on average)
is shorter than the time needed by MOD-VNS (72.24 seconds, on
average) although as observed before in Table 12 for the problem
type T1, MOD-VNS requires in 26 out of 40 instances less CPU time
than HGA1 to find the best solution. Moreover, MOD-VNS provides
higher number of best-known solutions than HGA1.

By analyzing Table 13, we observe that the average gap over T2
(N-center) is about 28% for HGA1 and 22% for MOD-VNS. Note that
this is the worst gap among all problem types (T1–T8). Neverthe-
less, in a number of instances, the best known objective function
value was attained, 18 out of 40 (18/40) for MOD-VNS as compared
to only 11 out of 40 (11/40) for HGA1. Concerning the CPU time, we
point out that MOD-VNS is about 27% faster than HGA1 for this
type of problem. Turning to problem type T3, we observe that
the performance of both algorithms is similar, although MOD-
VNS is slightly better both in CPU time (3% faster) and in quality
of solutions (0.03% gap for MOD-VNS as compared to 0.11% gap
for HGA1).



Table 16
Results for T7 and T8.

T7 T8

HGA1 MOD-VNS HGA1 MOD-VNS

BEST OBJ T GAP (%) OBJ T GAP (%) BEST OBJ T GAP (%) OBJ T GAP (%)

3924 3924 1.57 0.00 3924 0.00 0.00 1986 1986 1.57 0.00 1986 0.00 0.00
2769 2769 2.45 0.00 2769 0.41 0.00 1400 1400 2.61 0.00 1400 1.33 0.00
2874 2874 2.06 0.00 2874 2.69 0.00 1456 1456 2.12 0.00 1456 0.00 0.00
2054 2061 2.10 0.34 2054 0.31 0.00 1038 1040 2.46 0.19 1038 3.14 0.00

923 923 3.21 0.00 923 4.95 0.00 468 468 3.49 0.00 468 2.45 0.00

5250 5250 4.08 0.00 5250 0.00 0.00 2642 2642 4.27 0.00 2642 0.00 0.00
3778 3778 6.40 0.00 3778 0.00 0.00 1902 1902 6.60 0.00 1902 0.00 0.00
2993 2993 7.25 0.00 2993 0.00 0.00 1516 1516 7.58 0.00 1516 18.96 0.00
1834 1839 8.63 0.27 1839 8.09 0.27 924 924 10.83 0.00 924 27.18 0.00

844 844 10.15 0.00 845 30.08 0.12 424 424 11.37 0.00 424 11.89 0.00

5155 5155 7.33 0.00 5155 0.00 0.00 2588 2588 8.04 0.00 2588 0.00 0.00
4450 4450 11.58 0.00 4450 0.00 0.00 2249 2249 10.35 0.00 2249 0.00 0.00
2936 2936 13.46 0.00 2940 13.73 0.14 1474 1474 16.44 0.00 1474 34.74 0.00
1988 1993 19.69 0.25 2012 26.64 1.21 998 998 23.11 0.00 998 214.21 0.00
1161 1161 23.55 0.00 1161 173.10 0.00 581 584 27.55 0.52 583 245.09 0.34

5456 5456 11.70 0.00 5456 0.00 0.00 2735 2735 13.80 0.00 2735 0.00 0.00
4681 4681 26.69 0.00 4681 16.19 0.00 2347 2347 25.46 0.00 2347 8.83 0.00
3222 3226 24.77 0.12 3224 12.81 0.06 1618 1619 24.20 0.06 1620 10.81 0.12
1890 1913 44.05 1.22 1890 134.60 0.00 950 960 54.06 1.05 950 239.39 0.00
1192 1198 45.77 0.50 1192 113.40 0.00 604 607 83.68 0.50 607 30.47 0.50

6106 6106 16.46 0.00 6106 0.00 0.00 3062 3062 17.04 0.00 3062 0.00 0.00
5745 5745 35.11 0.00 5745 0.00 0.00 2888 2888 38.23 0.00 2888 0.00 0.00
3078 3091 41.89 0.42 3078 141.50 0.00 1554 1555 41.00 0.06 1554 31.82 0.00
1981 1984 69.82 0.15 1981 143.01 0.00 986 1000 97.79 1.42 986 106.07 0.00
1224 1226 130.82 0.16 1226 126.34 0.16 619 619 227.01 0.00 619 225.05 0.00

6628 6628 24.47 0.00 6628 0.97 0.00 3323 3323 22.75 0.00 3323 0.47 0.00
5556 5556 45.97 0.00 5556 5.00 0.00 2784 2784 48.13 0.00 2784 0.00 0.00
3007 3011 89.56 0.13 3008 110.02 0.03 1508 1512 101.77 0.27 1508 113.80 0.00
2033 2035 113.72 0.10 2035 115.34 0.10 1022 1022 188.39 0.00 1022 190.03 0.00
1336 1340 256.26 0.30 1336 153.50 0.00 683 683 584.48 0.00 685 269.07 0.29

6735 6735 24.78 0.00 6735 0.00 0.00 3374 3374 31.09 0.00 3374 8.33 0.00
6226 6226 46.54 0.00 6226 0.00 0.00 3143 3143 45.45 0.00 3143 9.33 0.00
3146 3146 112.38 0.00 3146 117.33 0.00 1572 1582 120.71 0.64 1572 118.10 0.00
2024 2024 216.48 0.00 2024 143.40 0.00 1019 1023 338.46 0.39 1021 356.05 0.20
6944 6944 35.51 0.00 6944 0.00 0.00 3479 3479 33.89 0.00 3479 0.00 0.00

6639 6639 67.82 0.00 6639 0.00 0.00 3330 3330 91.08 0.00 3330 5.58 0.00
3383 3383 156.16 0.00 3390 162.02 0.21 1700 1700 235.65 0.00 1707 245.01 0.41
7390 7390 49.03 0.00 7390 7.88 0.00 3704 3704 50.37 0.00 3704 0.00 0.00
6310 6310 68.42 0.00 6310 0.00 0.00 3187 3187 65.54 0.00 3187 0.00 0.00
3434 3434 197.24 0.00 3434 142.67 0.00 1722 1722 240.43 0.00 1730 356.02 0.46

Avrg. 3709.43 48.24 0.10 3708.68 46.92 0.06 Avrg. 1865.28 71.57 0.13 1864.63 69.19 0.06
# Best 28 14 32 26 # Best 32 15 33 25
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From Tables 15 and 16, we observe that MOD-VNS and HGA1
also compare similarly on problem types T5, T6, T7 and T8. On
the one hand, CPU time required by MOD-VNS is slightly smaller
than the one needed by HGA1 on problems T6, T7 and T8 and
slightly larger for T5; although in that case this excess is always
less than 24%. On the other hand, the quality of solutions found
by MOD-VNS is superior than the one obtained by HGA1, because
the average gap provided by HGA1 over all instances is higher than
that given by MOD-VNS. Moreover, as in all the previously com-
mented problem types MOD-VNS reaches a higher number of
best-known (optimal) objective function values than HGA1.

It should be emphasized that the performance of both proce-
dures is rather good on all problem types except for type T2 (i.e.,
N-center problems). For problem T2 the average gap is relatively
large. In spite of that, the quality of the solutions obtained by
MOD-VNS for problems of type T2 is better than that provided
by HGA1.
We show in Fig. 1 a comparison of the performance of algorithm
HGA1 versus MOD-VNS in terms of % gap (x-axis) and CPU time
(y-axis) for problem types T1 and T3–T8. The reader should ob-
serve that N-center problems, namely problem type T2, are ex-
cluded from this comparative since its average gap for both
algorithms is above 20%, some orders of magnitude greater than
the rest. Thus, we have decided not to include it because the rep-
resentation of those data on the same figure would have perturbed
the visualization of the comparison of the remaining ones. From
this table, we see that for problem types T3, T6, T7 and T8, MOD-
VNS requires less computing time than HGA1 whereas the contrary
occurs for problems T1, T4 and T5. However, in all problem types
the quality of solutions obtained by MOD-VNS is higher than the
quality of solutions obtained by HGA1 since MOD-VNS always gets
gaps with respect to best known solutions smaller than the corre-
sponding ones obtained by HGA1.



Fig. 1. GAP-CPU Time chart of the performance of algorithms HGA1 and MOD-VNS.
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From the above analysis, we observe that MOD-VNS performs
better than HGA1 in terms of the quality of the solutions found
(smaller gaps, higher number of best solutions found). Concerning
average CPU times the performance of both algorithms is similar:
in five out of eight problem types, namely T2, T3, T6, T7 and T8,
MOD-VNS is slightly faster whereas the opposite occurs for T1,
T4 and T5. Nevertheless, in all problem types the number of in-
stances with less required CPU time is always higher with MOD-
VNS than with HGA1.

Finally, we would like to point out that the new encoding of
solutions, specifically developed for applying VNS algorithms to
the DOMP problem, yields results considerably better than previ-
ous encodings as observed comparing VNS and MOD-VNS when
it is possible.
5. Conclusions

In this paper, we present a modified VNS heuristic, named
MOD-VNS (there exists another VNS for the same problem in the
literature) for the Discrete Ordered Median Problem (DOMP). This
algorithm is based on refined neighborhoods’ structures that favor
faster improvement of the objective function in the local search
phase and allow an efficient encoding of the solutions of the DOMP

avoiding sorting in the evaluation of the objective function at each
considered solution. Comprehensive computational experiments,
on ORLIB N-median instances, demonstrate the robustness of the
proposed algorithm with respect to solution quality. For five prob-
lem types, namely T2, T3, T6, T7 and T8, running times for MOD-
VNS are better on average than the corresponding running times
obtained by HGA1; moreover in all problem types the number of
instances for which MOD-VNS requires less computing time is
greater than the corresponding one for HGA1. In spite of that, for
3 problem types, T1, T4 and T5, the average running times of our
algorithm are higher than HGA1. Comparisons with results from
the literature show the appropriateness of applying the proposed
algorithm. Computational results show that in many cases MOD-
VNS outperforms other existing algorithms for these problems in
number of best solution found, average gap and CPU times.
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